MODELING OF EIGENVALUES AND EIGENFUNCTIONS
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We discuss a method of modeling the eigenvalues and eigenfunctions of heat- and mass-trans-
fer systems on analog computers. The bases for the modeling method are given, and an ex~
ample is presented. ' )

Finding the eigenvalues and eigenfunctions of heat- and mass~transfer systems in analytic form is
very difficult even in the simplest problems. Knowledge of them frequently enables one to draw far reach-
ing qualitative conclusions about the phenomena described by the corresponding equations. In particular,
a knowledge of even the first few eigenvalues and eigenfunctions of heat- and mass-transfer systems per-
mits the use of the theory and conclusions of the so-called regular thermal conditions [1, 2],

- We discuss a method for finding approximate eigenvalues and eigenfunctions of heat- and mass-trans-
fer systems by modeling the appropriate Sturm —Liouville equations on analog computers. The methods
used here are described in [3, 4].

Suppose the heat- and mass-transfer equations in matrix form are

ou = o oU
Zo 2T U i< x <, (1)
ot 0x(aax) 1SEsh
with the initial conditions
U@, x) =9 (%) 2)

and the homogeneous boundary conditions
0OV —BOUY s, = 0, [aDU, L pOU],y, = 0. (3)
Here a = (”ij)’ 5(k) = (5.(1})), o & = (aiaj{))’ b= (bij)a (ag{) = ozzq{) =0, deta = 0; i, j, k=1, 2) are given
1j
square matrices whose elements depend on x, and U = ]gll, @ = IZZ | are column matrices. It is required
2 b
to find the eigenvalues and eigenfunctions of system (1)-(3).

It is more convenient to write (1) in the form

U U
G Y 4
P % o )

where 2' is the derivative of matrix a with respect to x. Setting

U 9 X
U= [Uz * r)]‘T(T)X(x)” e [xz (x)]

and separating variables in (4) and (3) we must find nontrivial solutions X(k) (x) — the eigenfunctions — of
the following Sturm—Liouville problem:
X' +aaX +at(ME—Db)X =0, (5)
DX —BDX],y, =0, [a®X’ 4 BB X],y, =0, (6)
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where «~1 is the inverse of matrix a, and E is the second-order unit matrix. We denote the elements of
the matrix a”1a' by —7vij, and the elements of a ' (AZE — b) by —&4j. Then (5) takes the form

X; - 'YnX; - V1zX;~6nX1 —8,,X, =0,

)
Xo — v X1 — ?22X-”3“ 81 Xy — 050X, = 0.
We set Xy = Vy, X{ =V,, X, =V, and X; =V,. Then we obtain from (7) and (6) the following boundary-
value problem for determining the eigenvalues and eigenfunctions:
vy _
v dx »
d . 1
Exl =8, V1 -+ vV, + 8Vs + 1V
av.
s vy, (8)
dx .
dv ,
'Eﬁ = 8,V + ¥arVo + 655V - viV,y
with the boundary conditions
( i
(@t Vy—Bl'Vy — B Vilewr, = 0, [0V, — BV, — BViluo, — O, - )
(VoA B VB Vbt = O, @BV, BV, =BV, lems, = 0.
We seek a nontrivial solution of problem (8) and (9) in the form
4
W
V, = Lcjvkj(k: 1L ..., 4, (10)

j=1
where (ij) is the matrix of the fundamental solutions of Eqs. (8), and the cj are unknown constants.

The functions Vkj can be found, for example, as solutions of the following Cauchy problems for (8):

I, k=1 ILLk=2
Vh1(11):{0 kl’—l; th(lx)z{o k_—:Q;
. 1, k=3 1,k=4
Ve l) =1{" ) =" .
xa () {O,k#:3 k4 {0,}’2#4 v(ll,)

Substituting Vi from (10) into boundary conditions (9), we obtain, on the one hand, a system of equations
for determining the unknowns cj, and, on the other hand, by equating the determinant of this system to
zero, we obtain a certain condition (A) which must be satisfied when A is equal to an eigenvalue Ay.

Thus, for the first boundary-value problem in (8) and (9)
o=0=0,¢=1, c=—Vy, () V5 (Ly)-
Condition (A) in this case takes the form
V12 (lz) V34 (lz) - V14 (lz) Vsz (lz) =0.
For the second boundary-value problem in (8) and (9)
G=0,=0, e=1, ¢, = — Vo, ([,)/Vy (1)
and condition (A) has the form

Vf_q (lz) V34 (12) - V31 (lz) V24 (lz) = 0.

The matrix of the fundamental solutions (ij), the eigenvalues Ay, and the eigenfunctions X&) are conve-

niently found on analog computers, With a fixed A we solve Egs. (8) four times on the computer with initial
conditions (11) and check to see if condition (A) is satisfied. Varying i, i.e., varying the coefficients 5i1‘

in the block diagram of the model, we again solve Eqgs. (8) with conditions (11), trying to satisfy condition
(A). The eigenvalues Ay of system (1) are found in this way. The values found for Ay make it possible to
determine the initial values

) HAA Vi (ly), Vs (11): V4 (ll)h-*?»k- (12)

Then by solving system (8) with the initial conditions (12) we find the eigenfunctions X ) (x).
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Fig. 1. Block diagram of the model of problem (13),
expression (10), and condition (A).

It should be noted that the whole modeling procedure described is performed for a fixed block dia-
gram determined by Eqs. (8); only the initial conditions and the coefficients 0ij which depend on A are
varied,

As an illustration of the method we present the results of modeling the following problems on an
MN-14 analog computer: Find the eigenvalues and eigenfunctions of a heat- and mass-transfer system
described by the dimensionless equations

U, — 10 U, L5 62U2’

ot ox? Ox?
U AU U 0<x<1, {13)
—2 =0.1 L. 10.2 2

ot o ax?

with the initial conditions
Ul ©, ) =9, (x), Uz ©, X) =@, *)-

System (8) takes the form

‘—!YL = V2:
dx
dv, A2
= (0.2V, — 5V)),
dx 1.5 0.2V, )
s _y
dx
dv, A2
24 = - (0.1V, — 10V,
ix 15 0.1V, 3)

with the boundary conditions V;(0) = V5(0) = V5(1) = V3(1) = 0. Here

G=0=0c=16=— Vi (D/Vy, (1),
and condition (A) takes the form

Vlz“) V34(1)'—‘V14(1)V32(1) =0. .
The block diagram of the model corresponding to Eqs. (13), condition (A), and the expressions Vi =2 c;Vy;
N =1
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TABLE 1,

Modeling of Eigenvalues

X, (x) X, (x)
g3 <
5
2 i f
2
L.
7
Pl 7
o 75 7 ¢ V’- T
!
~g9
N 4
-2

Fig. 2. Eigenfunctions of problem (13) corresponding

and Eigenfunctions of Heat- and

Mass-Transfer Systems

No. ‘mach| No Mnach
3
1 1,187 6 7,580
2 2,387 7 8,832
3 3,715 8 10,100
4 4,975 9 11,220
5 i 6,269 10 12,210

to the eigenvalues Ay, Ay, and »,,

is shown in Fig. 1. The arrows denote resistances for model~
ing the coefficients which depend on A. Inthe example, the
modeling process is shortened as a result of the following con~
siderations:

1. Sincecy=cy=0,the functions Vy4 and Vis are not zero,
and, therefore, it is sufficient tomodel Egs. (8) twice to find V,
and Vk4.

2,. The block diagram of Fig. 1 was constructed to ob~
tain Vi9 and Vi, test condition (A), and find the functions Vy
and V; simultaneously,

The scales of the variables and the calculation of the coefficients are too obvious to present,

Figure 2 shows graphs of the first three eigenfunctions of this problem corresponding to the eigen-
values ~4, 5y, and Az; and Table 1 lists the first ten eignevalues found by modeling.
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